

Linking to and Citing Data

in non-trivial Setings

Andreas Rauber
rauber@ifs.tuwien.ac.at

Pa
ge

1

Outline

§  What are the challenges in citing dynamic data?
-  Data Citation: the status quo and requirements

§  How can we enable precise citation of dynamic data?
-  Making Dynamic Data Citeable

§  A prototype solution for SQL
-  Solution and challenges

§  Does this work for all data?
-  Next steps, open issues, and the RDA working Group

Page 2

Dynamic Data Citation

§  So far citable datasets have to be static
-  Fixed set of data, no changes:

no corrections to errors, no new data being added
-  Sometimes solved by assigning version numbers or releases

§  But: research data is dynamic
-  Correcting errors, adding new data, enhancing data quality, …
-  Changes sometimes highly dynamic, at irregular intervals

§  Granularity?
-  Researchers use specific subsets of data
-  Storing a copy of every subset does not scale
-  Assigning PIDs to every record does not scale
-  How to create specific subsets?
-  How to reference subsets in a dynamic environment?

Page 3

How should we cite data?

4

How should we cite data?

5

Subset Citation in Papers

6

Khosravi, Hossein, and Ehsanollah Kabir. "Introducing a very large dataset of handwritten
Farsi digits and a study on their varieties." Pattern Recognition Letters 28.10 (2007): 1133-1141.

Data Citation
Current Approaches

§  Persistent Identifier (PID) e.g. DOI, URI, ARK, …
currently provided for
-  entire data sets, copies of subsets
-  static data, sometimes release of versions
-  cited in their entirety with textual description of subsets

§  This is insufficient in many settings
-  imprecise
-  not machine-actionable
-  not scalable for large data sets
-  insufficient support for data that changes
-  insufficient support for arbitrary subsets (rows/columns)

Page 7

Data Citation – Requirements for Citing

§  Arbitrary subsets of data
-  rows/columns, time sequences, …
-  from single number to virtually the entire set

§  Changing data
-  corrections, additions, …

§  Stable across technology changes
-  e.g. migration to new database

§  Machine-actionable
-  not just machine-readable,

definitely not just human-readable and interpretable
§  Scalable to very large / highly dynamic datasets

Outline

§  What are the challenges in citing dynamic data?
-  Data Citation: the status quo and requirements

§  How can we enable precise citation of dynamic data?
-  Making Dynamic Data Citeable

§  A prototype solution for SQL
-  Solution and challenges

§  Does this work for all data?
-  Next steps, open issues, and the RDA working Group

Page 9

Making Dynamic Data Citeable

Data Citation: Data + Means-of-access

§ Data à time-stamped & versioned

Researcher creates working-set via some interface:
§ Access à assign PID to QUERY, enhanced with
-  Time-stamping for re-execution against versioned DB
-  Re-writing for normalization, unique-sort, timestamping
-  Hashing result-set: verifying identity/correctness

leading to landing page

S. Pröll, A. Rauber. Scalable Data Citation in Dynamic Large Databases: Model and Reference Implementation. In
IEEE Intl. Conf. on Big Data 2013 (IEEE BigData2013), 2013
http://www.ifs.tuwien.ac.at/~andi/publications/pdf/pro_ieeebigdata13.pdf

PID Assignment
§  PID assigned to a query identifying a new dataset
§  When to assign an existing/new PID to a query?

-  Existing PID: Identical query (semantics) with identical result
set, i.e. no change to any element touched upon by query
since first processing of the query

-  New PID: whenever query semantics is not absolutely identical
(irrespective of result set being potentially identical!)

§  Note:
-  Identical result set alone does not mean that the query

semantics is identical
-  Will assign different PIDs to capture query semantics
-  Need to normalize query to allow comparison

-> query re-writing

11

Query Re-Writing

§  Query re-writing needed to
-  Standardization/Normalization of query to help with

identifying semantically identical queries
-  Re-write to adapt to versioning approach chosen

(versioning in operational tables, separate history table, …)
-  Add timestamp to any select statement in query
-  Potentially re-write to identify last change to result set

touched upon (i.e. select including elements marked deleted,
check most recent timestamp, to determine correct PID
assignment)

-  Apply unique sort to any table touched upon in query
prior to query to ensure unique sort

12

Query Re-Writing

§  Normalization of query string
-  Upper / lower case spelling
-  Sorting of filtering criteria

(order does not influence result semantics)
-  Compute hash-key over query string to identify whether

identical query has been issued already
-  If identical query found, re-run and check for changes in result

set based on time-stamps of data records added/deleted
-  If different, assign new PID, otherwise existing PID

13

Query Re-Writing

§  Unique sort of result list
-  Most databases are set-based
-  Most subsequent processing is sequence-based
-  Need to re-write query to apply unique sort on any table

prior to applying any user-defined sort for repeatability

§  Hashing of result set to verify identity of result
-  Compute over entire result set: comprehensive, potentially slow
-  Computer over column headers and row IDs:

•  verifies correctness of attributes and data items selected
•  does not safeguard against unmonitored changes to

attribute values

14

Timestamping

§  Which timestamp to assign to new query?

-  Timestamp of query processing

-  Timestamp of last change to DB (global)

-  Timestamp of last change to result set touched upon by

query (including deletes)

most complex approach in terms of query re-writing required to

select with deletes, extract latest TS, then filter

15

Making Dynamic Data Citeable

§  Building blocks of supporting dynamic data citation:
-  Uniquely identifiable data records
-  Versioned data, marking changes as insertion/deletion
-  Time stamps of data insertion / deletions
-  “Query language” for constructing subsets

§  Add modules:
-  Persistent query store: queries and the timestamp

(either: <when issued> or <of last change to data>)
-  Query rewriting module
-  PID assignment for queries that enables access

§  Stable across data source migrations (e.g. diff. DBMS),
scalable, machine-actionable

Page 16

Data Citation – Deployment

§  Researcher uses workbench to identify subset of data
§  Upon executing selection („download“) user gets
-  Data (package, access API, …)
-  PID (e.g. DOI) (Query is time-stamped and stored)
-  Hash value computed over the data for local storage
-  Recommended citation text (e.g. BibTeX)

§  PID resolves to landing page
-  Provides detailed metadata, link to parent data set, subset,…
-  Option to retrieve original data OR current version OR changes

§  Upon activating PID associated with a data citation
-  Query is re-executed against time-stamped and versioned DB
-  Results as above are returned

This is an important advantage over
traditional approaches relying on, e.g.
storing a list of identifiers!!!

Outline

§  What are the challenges in citing dynamic data?
-  Data Citation: the status quo and requirements

§  How can we enable precise citation of dynamic data?
-  Making Dynamic Data Citeable

§  A prototype solution for SQL
-  Solution and challenges

§  Does this work for all data?
-  Next steps, open issues, and the RDA working Group

Page 18

Prototype Implementation

§  LNEC Laboratory of Civil Engineering, Portugal
§  Monitoring dams and bridges
§  31 manual sensor instruments
§  25 automatic sensor instruments
§  Web portal

-  Select sensor data
-  Define timespans

§  Report generation
-  Analysis processes, produces
-  Latex, produces
-  PDF report

Page 19

Florian Fuchs [CC-BY-3.0 (http://creativecommons.org/licenses/by/3.0)], via Wikimedia
Commons

Prototye Implementation

§  Million Song Dataset
http://labrosa.ee.columbia.edu/millionsong/

§  Larges benchmark collection in Music Retrieval
§  Original set provided by Echonest
§  No audio, only set of features
§  Harvested, additional features and metadata

extracted and offered by several groups
e.g. http://www.ifs.tuwien.ac.at/mir/msd/download.html

§  Dynamics because of metadata errors, extraction errors
§  Research groups select subsets by genre, audio length,

audio quality,…

20

Prototype Implementation

21

Time-Stamping and Versioning

§  Integrated
-  Extend original tables by temporal metadata
-  Expand primary key by version column

§  Hybrid
-  Utilize history table for deleted record versions with metadata
-  Original table reflects latest version only

§  Separated
-  Utilizes full history table
-  Also inserts reflected in history table

§  Solution to be adopted depends on trade-off

-  Storage Demand
-  Query Complexity
-  Software adaption

Page 22

Storing Queries

Page 23

§  Add query store containing
-  PID of the query
-  Original query
-  Re-written query + query string hash
-  Timestamp (as included in re-written

query)
-  Hash-key of query result
-  Metadata useful for citation / landing

page
(creator, institution, rights, …)

-  PID of parent dataset
(or using fragment identifiers for query)

Query Re-Writing

§  Normalizing queries to detect identical queries
-  WHERE clause sorted
-  Calculate query string hash
-  Identify semantically identical queries

24

Query Re-Writing

§  Normalizing queries to detect identical queries
-  WHERE clause sorted
-  Calculate query string hash
-  Identify semantically identical queries
-  à non-identical queries: columns in different order

25

Query Re-Writing

26

§  Adapt query to history table

Outline

§  What are the challenges in citing dynamic data?
-  Data Citation: the status quo and requirements

§  How can we enable precise citation of dynamic data?
-  Making Dynamic Data Citeable

§  A prototype solution for SQL
-  Solution and challenges

§  Does this work for all data?
-  Next steps, open issues, and the RDA working Group

Page 27

Data Citation: Next steps

§  Solution devised for SQL -> expand to other data types
-  SQL: LNEC, MSD
-  Pilot for CSV: MSD
-  Analyze how to make XML and RDF time-stamped, versioned

§  Verify pilots conceptually
-  Does it work?
-  Impact on data center (size, operations, APIs, …)

specifically: how to realize versioning
-  How to integrate in workbenches?

§  Implement several pilots and verify

§  Test stability under migrations of data management systems

§  Research Data Alliance
§  WG on Data Citation:

Making Dynamic Data Citeable
§  WG officially endorsed in March 2014

-  Concentrating on the problems of
dynamic (changing) datasets

-  Focus!
-  Liaise with other WGs on attribution, metadata, …
-  Liaise with other initiatives on data citation

(CODATA, DataCite, Force11, …)

RDA WG Data Citation

Join RDA and Working Group

If you are interested in joining the discussion,
wish to establish a data citation solution, …

§ Register for the RDA WG on Data Citation:

-  Website:
https://rd-alliance.org/working-groups/data-citation-wg.html

-  Mailinglist:
https://rd-alliance.org/node/141/archive-post-mailinglist

-  Web Conferences:
https://rd-alliance.org/webconference-data-citation-wg.html

-  List of pilots:
https://rd-alliance.org/groups/data-citation-wg/wiki/
collaboration-environments.html

Page 31

Thank you for your attention.

Data

Table	
 A

Table	
 B

Query

Query	
 Store

Subsets

PID	
 Provider

PID	
 Store

Literature and Links

-  http://www.dlib.org/dlib/march07/altman/03altman.html
-  http://www.dcc.ac.uk/resources/how-guides/cite-datasets
-  http://www.dlib.org/dlib/january11/starr/01starr.html
-  http://dx.doi.org/10.1109%2F2.901164
-  http://www.doi.org/factsheets/DOIKeyFacts.html
-  http://www.datacite.org
-  http://www.handle.net
-  http://www.mpi.nl/DAM-LR/meeting5/Persistent%20Identifiers.pdf
-  https://wiki.ucop.edu/display/Curation/ARK
-  http://www.doi.org/factsheets/DOIHandle.html
-  http://n2t.net/ezid/home/understanding
-  http://sagecite.knowledgeblog.org/2011/07/28/why-do-we-need-

datacitation

Page 32

Further Pointers

-  http://www.ariadne.ac.uk/issue56/tonkin
-  http://ands.org.au/guides/persistent-identifiers-working.html
-  http://hdl.handle.net/
-  http://dx.doi.org/
-  http://www.dcc.ac.uk/resources/how-guides/appraise-select-

data

Page 33

